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Abstract outputs. ANN models can be much faster than original
EM models, more accurate than polynomial fitted and
Artificial neural networks (ANNSs) provide fast other empirical models, allow more input dimensions than
and accurate models for microwave modeling, simulation,look-up table models and are easier to develop when a new
and optimization. This paper addresses the use of priocomponent/technology is introduced [4].
knowledge (or existing models) for reducing the A potential drawback of ANN modeling is the
complexity of the input/output relationships that an ANN amount of training data that needs to be provided in order
has to learn. This reduction of input/output complexity to obtain an accurate model. Training data must be
allows an accurate ANN model to be developed with lessprovided to characterize the component to be modeled
training data, which is very advantageous when trainingover a desired range of operation and for different
data is expensive/ time-consuming to obtain, such as withcombinations of geometrical and physical model inputs.
EM simulation. Two simple methods of incorporating The difficulty arises when training data is expensive or
prior knowledge into ANN training are demonstrated and difficult to obtain. An approach to reducing this data is
compared: the difference method and the prior knowledgethrough reducing the complexity of the input/output
input (PKI) method. As an example, a 2-port microstrip mapping that must be learned by the ANN. To this end we
via model has been developed by using a closed-formpropose using prior knowledge (existing models) about the
expression for the via's inductance as prior knowledge.  component to be modeled. Prior knowledge, for example,
can be in the form of analytical equations, empirical
models, or already trained ANN models. These existing
I. Introduction models are models which contain information about the
component to be modeled but do not give the required
Accurate and efficient models for circuit accuracy over the desired range of operation.
components are essential for cost-effective circuit design.

Models are generally developed using analytical, Ill. Use of Prior Knowledge for ANN Modeling
electromagnetic simulation, and/or measurement based
methods. In recent years, empirical models for microwave For a chemical vapor deposition in a horizontal

components based on artificial neural networks (ANNS) reactor, Marwah [5] and Marwah and Mahajan [6] propose
have received much attention [1-3] as an alternative tousing different model modification techniques to convert a
standard empirical modeling techniques, such aspreviously trained physical neural network model (called
polynomial fitting and look-up tables. ANN models the source model) to a model suitable for a modified
provide a general framework for modeling complex processing environment (called the target model). Three
input/output mappings between multiple inputs and different techniques, namely the difference method, the
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source weights method, and the prior knowledge input

(PKI) method are evaluated. The PKI method was shown Exisirg Sn
to out perform the other two methods. Knowledge
To gain better insight into the dynamics of the +
above mentioned model modifier techniques, the Py e @%AS
output/input behavior was monitored during the training
process. It was noted that in the difference method, the o s
difference between the source and the target was not a Simuation
simpler function of the inputs as compared to the mapping Traning ____

Signal

directly from the source to the target. As a result, no
benefit was expected to result from this modifier approach.

This was supported by the training results, which showed +
that the percent relative error on the target points was the i e Ns,,
same as that obtained by training the target model without Py ] o +

the help of the source model. The source weight technique

resulted in a similar performance as the difference method. 1

With the PKI method, on the other hand, the source p—

function converged towards the target function

continuously as the training proceeded. Trained on one- ()

fourths of the points used for the source model, the target

model achieved the same accuracy as the source model. Exising Modd Outputs

Similar techniques have not been investigated earlier for Existing Prysica Parameters | e

their performance in modeling of microwave components. Konede FEveY | Smuton
In this paper, we present and compare two of the

three techniques mentioned above for incorporating prior EM Output
knowledge (or existing models) into ANN model ANNOup
-+

ANN

development using EM simulation. These are the Modd
difference method and the PKI method. In the differenceram
method, the ANN is trained on the difference between the

EM simulation output and the existing model (source Fror (Trafning) Signal
model) output, shown in Fig. 1a. This method is expected

to give good results when the difference has a simpler (b)

input/output mapping as a function of the inputs than the
target data. A simpler input/output mapping requires less
training data to characterize. For the PKI method, the
source model outputs are used as inputs for the ANN
model in addition to the other inputs, shown in Fig. 1b. In
this case, the input/output mapping that must be learned bzv
the ANN is that between the output response of the
existing model and that of the target model. For the cas
when the target outputs are the same as the existing mod
outputs, the learning problem is reduced to a one-to-on
mapping. Note that conventional two-layer neural
networks along with backpropagation training [7] are used
with both the difference and PKI methods, which is
advantageous for a user.

Fig. 1 Schemes for using prior knowledge for artificial
neural network training, (a) difference method and (b)
PKI method.

idth of the incoming microstrip lines, Whe side of the
quare shaped via pad,,\and the diameter dhe via
le to ground, [}, are the variable input parameters for
e EM-ANN model. Input variable ranges are given in
able 1. Model outputs are the magnitudes and phases of
Sipand Si.

An existing model in equation form for the
inductance of a microstrip grounding via is given in [8].
The existing model was found to give reasonable results at
lower frequencies (<15 GHz), but as frequency increased,
errors between the model and EM simulation also
increased. Inaccuracies of the model, especially at higher
frequencies may be due to pad inductance, pad
gapacitance, discontinuity effects, and radiation from the
via-hole [9,10].

lll. Two-Port GaAs Microstrip Ground Via

The geometry of the two-port broadband GaAs
microstrip via is shown in Fig. 2. The height of the
substrate, the dielectric constant, and all loss parameter
are considered constant for this example. Frequency, the
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addition, the PKI method provides better accuracy faf |S
and comparable accuracy on other parameters.
1 W
T examples), 14 test structures (84 examples), and again 16
verification structures (96 examples). Model average error
tea = 0.1 mil. training, respectively.
With more training data, error results for regular
Table 1 Variable input parameters for GaAs microstrip IMProve also and still provide better accuracy than regular
ground via modeling. training. What is more important is that when comparing

R RENCE —f— W, —] the difference method and the PKI method provide more
.
W Dyia /////// 2 To further demonstrate the advantages of
Z incorporating existing knowledge into training, EM-ANN
)
training improve. However, verification dataset error
verification dataset errors, the accuracy of the models

accurate models than using regular training methods. In
models were developed using 15 training vias (90
thickness = 4 milg,=12.9, ta#=0.002,6er4.1x10, and Table 7 for regular training, difference training, and PKI
results using the difference method and PKI method
trained with only 7 via structures using the difference

Input Minimum Value Maxlimum method and PKI method show comparable or better
Parameter Value accuracy than the model developed using 15 training via
Frequency 5 GHz 55 GHz structures and regular training. In other words, when

Wi/W, 0.3 1.0 existing knowledge is used for model development, fewer

Dyia/Wp 0.2 0.8 EM simulations are needed for a required model accuracy.
WI/Hs_ub 0.1 2.0
V. Concluding Remarks
EM simulations were performed from 5 GHz to Use of prior knowledge (existing models) has

55 GHz in 10 GHZ steps on 45 via structures within the been shown to reduce the amount of training data needed
ranges given in Table 1, generating 270 input/outputfor ANN model development. This is particularly useful
vectors (termed examples throughout the rest of thiswhen input data is expensive/time-consuming to obtain.
paper). The via structures simulated to provide trainingTwo simple methods have been demonstrated for
data were chosen using design of experiments (DOE)ncorporation of prior knowledge into ANN training: the
central composite techniques [11]. Originally, fifteen vias difference method and the PKI method. Both methods are
were simulated for training, 14 for simultaneous testing or simple to implement and are applicable to standard 2 layer
additional training, and 16 for verification. However, with networks using the error backpropagation training
the use of prior knowledge, it was found that less trainingalgorithm, which has been studied extensively.

data is sufficient. Therefore, in the following model Both the difference method and the PKI method
development, more of the simulated data has been used fethow increased accuracy over regular training methods
simultaneous testing. using no prior knowledge. Also, the PKI method shows

Initial model development used only 7 via slightly better accuracy than the difference method for the
structures (42 examples) for training, 22 via structuresexamples considered.
(132 examples) for testing, and 16 via structures (96
examples) for model verification. EM-ANN models were
developed using regular training methods (no use of References
existing knowledge), the difference method, and the PKI

method. The training procedure used for EM-ANN model [ P.M. Watson and K.C. Gupta, "EM-ANN Models for

Microstrip Vias and Interconnects in Multilayer Circuits,”

development has previously been published in [1_'2]_- IEEE Trans. on Microwave Theory and Tec¥al. 44, No.
Model average error and standard deviation are 12, Dec. 1996, pp. 2495-2503. _ o
shown in Table 2, Table 3, and Table 4 for regular [2] P.M. Watson and K.C. Gupta, “Design and Optimizaton of
F : P . CPW Circuits Using EM-ANN Models for CPW
trammgf dlﬁerenc_e tra'“”.‘g' _a‘nd PKI training, Components,IEEE Trans. on Microwave Theory and Tech
respectively. Looking at verification dataset errors, both Vol. 45, No. 12, Dec. 1997, pp. 2515-2523.
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Table 6 Error results for the 2-port microstrip \iifference

training. (7 train structures, 4 inputs, 4 outputs, 5 hidden method. (15 train structures, 4 inputs, 4 outputs, 12 hidden

neurons, 49 weights)

neurons, 112 weights)

[Su| PASTL) [Spal £Sx (0) [Stal £S5 () [Spa £S5 (%)
Train/test Train/test
Average error | 0.0076 | 2.000 | 0.0314 | 2.575 Average error | 0.0013 | 0.628 | 0.0036 | 0.731
Standard dev. | 0.0114 | 2.275 | 0.0389 | 3.000 Standard dev. | 0.0014 | 0.502 | 0.0035 | 0.526
Verification Verification
Average error | 0.0066 | 1.677 | 0.0226 | 2.104 Average error | 0.0026 | 0.709 | 0.0047 | 0.983
Standard dev. | 0.0085 | 1.831 | 0.0244 [ 2.197 Standard dev. | 0.0032 | 0.524 | 0.0038 | 0.839

Table 3 Error results for the 2-port microstrip wiifference

Table 7 Error results for the 2-port microstrip \R&I method.

method. (7 train structures, 4 inputs, 4 outputs, 8 hidden (15 train structures, 8 inputs, 4 outputs, 11 hidden neurons, 147

neurons, 76 weights) weights)
[Stal £S11 (0) [Spal ZSn (°) [Sual £S5 () [Spa £S5 (%)
Train/test Train/test
Average error | 0.0042 | 1.313 | 0.0094 | 2.084 Average error | 0.0017 | 0.538 | 0.0032 | 0.662
Standard dev. | 0.0058 | 1.803 | 0.0089 | 3.174 Standard dev. | 0.0014 | 0.563 | 0.0026 | 0.742
Verification Verification
Average error | 0.0041 | 0.941 | 0.0083 | 1.477 Average error | 0.0021 [ 0.782 | 0.0038 | 1.087
Standard dev. | 0.0043 | 0.908 | 0.0061 | 1.387 Standard dev. | 0.0024 | 0.604 | 0.0026 | 0.947
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