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Abstract

Artificial neural networks (ANNs) provide fast
and accurate models for microwave modeling, simulation,
and optimization.  This paper addresses the use of prior
knowledge (or existing models) for reducing the
complexity of the input/output relationships that an ANN
has to learn. This reduction of input/output complexity
allows an accurate ANN model to be developed with less
training data, which is very advantageous when training
data is expensive/ time-consuming to obtain, such as with
EM simulation. Two simple methods of incorporating
prior knowledge into ANN training are demonstrated and
compared: the difference method and the prior knowledge
input (PKI) method.  As an example, a 2-port microstrip
via model has been developed by using a closed-form
expression for the via’s inductance as prior knowledge.

I.  Introduction

Accurate and efficient models for circuit
components are essential for cost-effective circuit design.
Models are generally developed using analytical,
electromagnetic simulation, and/or measurement based
methods.  In recent years, empirical models for microwave
components based on artificial neural networks (ANNs)
have received much attention [1-3] as an alternative to
standard empirical modeling techniques, such as
polynomial fitting and look-up tables.  ANN models
provide a general framework for modeling complex
input/output mappings between multiple inputs and

outputs.  ANN models can be much faster than original
EM models, more accurate than polynomial fitted and
other empirical models, allow more input dimensions than
look-up table models and are easier to develop when a new
component/technology is introduced [4].

A potential drawback of ANN modeling is the
amount of training data that needs to be provided in order
to obtain an accurate model.  Training data must be
provided to characterize the component to be modeled
over a desired range of operation and for different
combinations of geometrical and physical model inputs.
The difficulty arises when training data is expensive or
difficult to obtain. An approach to reducing this data is
through reducing the complexity of the input/output
mapping that must be learned by the ANN.  To this end we
propose using prior knowledge (existing models) about the
component to be modeled.  Prior knowledge, for example,
can be in the form of analytical equations, empirical
models, or already trained ANN models.  These existing
models are models which contain information about the
component to be modeled but do not give the required
accuracy over the desired range of operation.

III.  Use of Prior Knowledge for ANN Modeling

For a chemical vapor deposition in a horizontal
reactor, Marwah [5] and Marwah and Mahajan [6] propose
using different model modification techniques to convert a
previously trained physical neural network model (called
the source model) to a model suitable for a modified
processing environment (called the target model).  Three
different techniques, namely the difference method, the
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source weights method, and the prior knowledge input
(PKI) method are evaluated.  The PKI method was shown
to out perform the other two methods.

To gain better insight into the dynamics of the
above mentioned model modifier techniques, the
output/input behavior was monitored during the training
process. It was noted that in the difference method, the
difference between the source and the target was not a
simpler function of the inputs as compared to the mapping
directly from the source to the target. As a result, no
benefit was expected to result from this modifier approach.
This was supported by the training results, which showed
that the percent relative error on the target points was the
same as that obtained by training the target model without
the help of the source model. The source weight technique
resulted in a similar performance as the difference method.
With the PKI method, on the other hand, the source
function converged towards the target function
continuously as the training proceeded.  Trained on one-
fourths of the points used for the source model, the target
model achieved the same accuracy as the source model.
Similar techniques have not been investigated earlier for
their performance in modeling of microwave components.

In this paper, we present and compare two of the
three techniques mentioned above for incorporating prior
knowledge (or existing models) into ANN model
development using EM simulation.  These are the
difference method and the PKI method.   In the difference
method, the ANN is trained on the difference between the
EM simulation output and the existing model (source
model) output, shown in Fig. 1a.  This method is expected
to give good results when the difference has a simpler
input/output mapping as a function of the inputs than the
target data.  A simpler input/output mapping requires less
training data to characterize.  For the PKI method, the
source model outputs are used as inputs for the ANN
model in addition to the other inputs, shown in Fig. 1b.   In
this case, the input/output mapping that must be learned by
the ANN is that between the output response of the
existing model and that of the target model.  For the case
when the target outputs are the same as the existing model
outputs, the learning problem is reduced to a one-to-one
mapping.  Note that conventional two-layer neural
networks along with backpropagation training [7] are used
with both the difference and PKI methods, which is
advantageous for a user.

III.  Two-Port GaAs Microstrip Ground Via

The geometry of the two-port broadband GaAs
microstrip via is shown in Fig. 2.  The height of the
substrate, the dielectric constant, and all loss parameters
are considered constant for this example.  Frequency, the
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Fig. 1 Schemes for using prior knowledge for artificial
neural network training,  (a) difference method and (b)
PKI method.

width of the incoming microstrip lines, Wl, the side of the
square shaped via pad, Wp, and the diameter of the via
hole to ground, Dvia, are the variable input parameters for
the EM-ANN model. Input variable ranges are given in
Table 1.   Model outputs are the magnitudes and phases of
S11 and S21.

An existing model in equation form for the
inductance of a microstrip grounding via is given in [8].
The existing model was found to give reasonable results at
lower frequencies (<15 GHz), but as frequency increased,
errors between the model and EM simulation also
increased.  Inaccuracies of the model, especially at higher
frequencies may be due to pad inductance, pad
capacitance, discontinuity effects, and radiation from the
via-hole [9,10].
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Fig. 2  Two-port GaAs microstrip grounding via. Substrate
thickness = 4 mil, er=12.9, tand=0.002, smetal=4.1x107, and
tmetal = 0.1 mil.

Table 1 Variable input parameters for GaAs microstrip
ground via modeling.

Input
Parameter

Minimum Value Maximum
Value

Frequency 5 GHz 55 GHz
Wl/Wp 0.3 1.0
Dvia/Wp 0.2 0.8
Wl/Hsub 0.1 2.0

EM simulations were performed from 5 GHz to
55 GHz in 10 GHZ steps on 45 via structures within the
ranges given in Table 1, generating 270 input/output
vectors (termed examples throughout the rest of this
paper).  The via structures simulated to provide training
data were chosen using design of experiments (DOE)
central composite techniques [11].  Originally, fifteen vias
were simulated for training, 14 for simultaneous testing or
additional training, and 16 for verification.  However, with
the use of prior knowledge, it was found that less training
data is sufficient.  Therefore, in the following model
development, more of the simulated data has been used for
simultaneous testing.

Initial model development used only 7 via
structures (42 examples) for training, 22 via structures
(132 examples) for testing, and 16 via structures (96
examples) for model verification.  EM-ANN models were
developed using regular training methods (no use of
existing knowledge), the difference method, and the PKI
method.  The training procedure used for EM-ANN model
development has previously been published in [1,2].

Model average error and standard deviation are
shown in Table 2, Table 3, and Table 4 for regular
training, difference training, and PKI training,
respectively.  Looking at verification dataset errors, both

the difference method and the PKI method provide more
accurate models than using regular training methods.  In
addition, the PKI method provides better accuracy for |S11|
and comparable accuracy on other parameters.

To further demonstrate the advantages of
incorporating existing knowledge into training, EM-ANN
models were developed using 15 training vias (90
examples), 14 test structures (84 examples), and again 16
verification structures (96 examples).  Model average error
and standard deviation are shown in Table 5, Table 6, and
Table 7 for regular training, difference training, and PKI
training, respectively.

With more training data, error results for regular
training improve.  However, verification dataset error
results using the difference method and PKI method
improve also and still provide better accuracy than regular
training.  What is more important is that when comparing
verification dataset errors, the accuracy of the models
trained with only 7 via structures using the difference
method and PKI method show comparable or better
accuracy than the model developed using 15 training via
structures and regular training.  In other words, when
existing knowledge is used for model development, fewer
EM simulations are needed for a required model accuracy.

IV.  Concluding Remarks

Use of prior knowledge (existing models) has
been shown to reduce the amount of training data needed
for ANN model development.  This is particularly useful
when input data is expensive/time-consuming to obtain.
Two simple methods have been demonstrated for
incorporation of prior knowledge into ANN training: the
difference method and the PKI method.  Both methods are
simple to implement and are applicable to standard 2 layer
networks using the error backpropagation training
algorithm, which has been studied extensively.

Both the difference method and the PKI method
show increased accuracy over regular training methods
using no prior knowledge.  Also, the PKI method shows
slightly better accuracy than the difference method for the
examples considered.
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Table 2  Error results for the  2-port microstrip via,  regular
training . (7 train structures, 4 inputs, 4 outputs, 5 hidden
neurons, 49 weights)

|S11| ÐS11 (°) |S21| ÐS21 (°)
Train/test
  Average error
  Standard dev.

0.0076
0.0114

2.000
2.275

0.0314
0.0389

2.575
3.000

Verification
 Average error
 Standard dev.

0.0066
0.0085

1.677
1.831

0.0226
0.0244

2.104
2.197

Table 3 Error results for the  2-port microstrip via, difference
method. (7 train structures, 4 inputs, 4 outputs, 8 hidden
neurons, 76 weights)

|S11| ÐS11 (°) |S21| ÐS21 (°)
Train/test
  Average error
  Standard dev.

0.0042
0.0058

1.313
1.803

0.0094
0.0089

2.084
3.174

Verification
 Average error
 Standard dev.

0.0041
0.0043

0.941
0.908

0.0083
0.0061

1.477
1.387

Table 4  Error results for the  2-port microstrip via, PKI method.
(7 train structures, 8 inputs, 4 outputs, 5 hidden neurons, 69
weights)

|S11| ÐS11 (°) |S21| ÐS21 (°)
Train/test
  Average error
  Standard dev.

0.0035
0.0087

1.209
1.780

0.0092
0.0122

1.587
1.890

Verification
 Average error
 Standard dev.

0.0023
0.0023

0.949
1.011

0.0066
0.0077

1.526
1.426

Table 5  Error rsults for the  2-port microstrip via, regular
training . (15 train structures, 4 inputs, 4 outputs, 13 hidden
neurons, 121 weights)

|S11| ÐS11 (°) |S21| ÐS21 (°)
Train/test
  Average error
  Standard dev.

0.0020
0.0023

0.528
0.448

0.0065
0.0059

0.620
0.544

Verification
 Average error
 Standard dev.

0.0041
0.0049

0.714
0.504

0.0101
0.0089

1.061
0.929

Table 6  Error results for the 2-port microstrip via, difference
method. (15 train structures, 4 inputs, 4 outputs, 12 hidden
neurons, 112 weights)

|S11| ÐS11 (°) |S21| ÐS21 (°)
Train/test
  Average error
  Standard dev.

0.0013
0.0014

0.628
0.502

0.0036
0.0035

0.731
0.526

Verification
 Average error
 Standard dev.

0.0026
0.0032

0.709
0.524

0.0047
0.0038

0.983
0.839

Table 7  Error results for the  2-port microstrip via, PKI  method.
(15 train structures, 8 inputs, 4 outputs, 11 hidden neurons, 147
weights)

|S11| ÐS11 (°) |S21| ÐS21 (°)
Train/test
  Average error
  Standard dev.

0.0017
0.0014

0.538
0.563

0.0032
0.0026

0.662
0.742

Verification
 Average error
 Standard dev.

0.0021
0.0024

0.782
0.604

0.0038
0.0026

1.087
0.947
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